Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioconjug Chem ; 32(11): 2327-2341, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34664934

RESUMO

Leishmaniasis is among the five parasitic diseases that still require the development of new drugs. Ultrasmall cerium (Ce3/4+) cation-doped maghemite (γ-Fe2O3) nanoparticles (NPs) were tested as a potential drug to treat visceral leishmaniasis, a disease affecting millions of people worldwide. The NPs were engineered for binding a polycationic branched polyethylenimine (PEI) polymer, thereby rupturing the single lysosome of these parasites and enabling entry of the anti-Leishmania drug, pentamidine. Exploiting the known lanthanide cation/complex-based coordinative chemical reactivity enabled the binding of both active agents onto the surface of the NPs. To optimize the fabrication of the cytotoxic NPs, optimization via a DoE (Design of Experiments) process was used to identify the optimal NP with toxicity against the two stages of the parasite, promastigotes, which propagate in the insect, and amastigotes, which infect the mammalian host. The screen identified a single optimized NP (DoE Opt) that was further examined in a mouse model of visceral leishmaniasis. Intravenous injection of the NPs had no adverse effects on the cellular composition or biochemical parameters of the blood, demonstrating no signs of systemic toxicity. The optimized NP was able to eradicate visceral disease caused by Leishmania donovani infection. The study demonstrates the versatile ability of the cerium-doped NPs to bind at least two cytotoxic ligands. This approach could be used for optimizing the binding of different drugs for the treatment of other diseases, including cancer. Since resistance to treatment with nanocarriers was not reported to date, such an approach could potentially overcome drug resistance that emerges when using soluble small molecule drugs.


Assuntos
Leishmaniose Visceral
2.
Biomed Opt Express ; 12(7): 4496-4509, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34457428

RESUMO

Nanoparticles (NPs) based drugs for topical administration are gaining interest in the biomedical world. However, a study tool of their penetration depth to the different tissue layers without additional markers or contrast agents is required in order to relieve safety concerns. While common diagnostic tools, e.g. X-ray, computed tomography or magnetic resonance imaging, can provide in vivo detection of the metallic NPs, their resolution cannot determine the exact penetration depth to the thin skin layers. In this work, we propose the noninvasive nanophotonics iterative multi-plane optical property extraction (IMOPE) technique for the novel iron-based NPs detection in leishmaniasis lesions. The optical properties of the different tissue layers: epidermis, dermis, subcutaneous fat and muscle, were examined before and after topical drug administration. The potential topical drug was detected in the epidermis (∼13µm) and dermis (∼160µm) layers in mice lesions at different stages of the disease (two or four weeks post infection). The lesion size influence on the detection was also observed, where in larger lesions the IMOPE senses a greater presence of the topical drug.

3.
J Control Release ; 335: 203-215, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34019947

RESUMO

Kinetoplastids are infamous parasites that include trypanosomes and Leishmania species. Here, we developed an anti-Leishmania nano-drug using ultra-small functional maghemite (γ-Fe2O3) nanoparticles (NPs) that were surface-doped by [CeLn]3/4+ to enable effective binding of the polycationic polyethylenebyimine (PEI) polymer by coordinative chemistry. This resulting nano-drug is cytolytic in-vitro to both Trypanosoma brucei parasites, the causative agent of sleeping sickness, as well as to three Leishmania species. The nano-drug induces the rupture of the single lysosome present in these parasites attributed to the PEI, leading to cytolysis. To evaluate the efficacy of a "cream-based" version of the nano-drug, which was termed "Nano-Leish-IL" for topical treatment of cutaneous leishmaniasis (CL), we developed a rapid screening method utilizing T. brucei parasites involved in social motility and demonstrated that functional NPs arrested the migration of the parasites. This assay presents a surrogate system to rapidly examine the efficacy of "cream-based" drugs in topical preparations against leishmaniasis, and possibly other dermal infectious diseases. The resulting Nano-Leish-IL topical preparation eliminated L. major infection in mice. Thus, this study presents a novel efficient nano-drug targeting the single lysosome of kinetoplastid parasites.


Assuntos
Leishmaniose Cutânea , Nanocompostos , Preparações Farmacêuticas , Animais , Compostos Férricos , Ferro , Leishmaniose Cutânea/tratamento farmacológico , Camundongos , Óxidos
4.
mBio ; 11(5)2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33051367

RESUMO

Arginine homeostasis in lysosomes is critical for the growth and metabolism of mammalian cells. Phagolysosomes of macrophages are the niche where the parasitic protozoan Leishmania resides and causes human leishmaniasis. During infection, parasites encounter arginine deprivation, which is monitored by a sensor on the parasite cell surface. The sensor promptly activates a mitogen-activated protein kinase 2 (MAPK2)-mediated arginine deprivation response (ADR) pathway, resulting in upregulating the abundance and activity of the Leishmania arginine transporter (AAP3). Significantly, the ADR is also activated during macrophage infection, implying that arginine levels within the host phagolysosome are limiting for growth. We hypothesize that ADR-mediated upregulation of AAP3 activity is necessary to withstand arginine starvation, suggesting that the ADR is essential for parasite intracellular development. CRISPR/Cas9-mediated disruption of the AAP3 locus yielded mutants that retain a basal level of arginine transport but lack the ability to respond to arginine starvation. While these mutants grow normally in culture, they were impaired in their ability to develop inside THP-1 macrophages and were ∼70 to 80% less infective in BALB/c mice. Hence, inside the host macrophage, Leishmania must overcome the arginine "hunger games" by upregulating the transport of arginine via the ADR. We show that the ability to monitor and respond to changes in host metabolite levels is essential for pathogenesis.IMPORTANCE In this study, we report that the ability of the human pathogen Leishmania to sense and monitor the lack of arginine in the phagolysosome of the host macrophage is essential for disease development. Phagolysosomes of macrophages are the niche where Leishmania resides and causes human leishmaniasis. During infection, the arginine concentration in the phagolysosome decreases as part of the host innate immune response. An arginine sensor on the Leishmania cell surface activates an arginine deprivation response pathway that upregulates the expression of a parasite arginine transporter (AAP3). Here, we use CRISPR/Cas9-mediated disruption of the AAP3 locus to show that this response enables Leishmania parasites to successfully compete with the host macrophage in the "hunger games" for arginine.


Assuntos
Arginina/metabolismo , Interações Hospedeiro-Parasita , Leishmania/crescimento & desenvolvimento , Leishmania/metabolismo , Macrófagos/parasitologia , Animais , Sistemas CRISPR-Cas , Feminino , Leishmaniose/metabolismo , Leishmaniose/parasitologia , Lisossomos/parasitologia , Macrófagos/fisiologia , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos BALB C , Fagossomos/parasitologia , Fagossomos/fisiologia
5.
PLoS Pathog ; 13(3): e1006245, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28257521

RESUMO

Extracellular vesicles (EV) secreted by pathogens function in a variety of biological processes. Here, we demonstrate that in the protozoan parasite Trypanosoma brucei, exosome secretion is induced by stress that affects trans-splicing. Following perturbations in biogenesis of spliced leader RNA, which donates its spliced leader (SL) exon to all mRNAs, or after heat-shock, the SL RNA is exported to the cytoplasm and forms distinct granules, which are then secreted by exosomes. The exosomes are formed in multivesicular bodies (MVB) utilizing the endosomal sorting complexes required for transport (ESCRT), through a mechanism similar to microRNA secretion in mammalian cells. Silencing of the ESCRT factor, Vps36, compromised exosome secretion but not the secretion of vesicles derived from nanotubes. The exosomes enter recipient trypanosome cells. Time-lapse microscopy demonstrated that cells secreting exosomes or purified intact exosomes affect social motility (SoMo). This study demonstrates that exosomes are delivered to trypanosome cells and can change their migration. Exosomes are used to transmit stress signals for communication between parasites.


Assuntos
Exossomos/metabolismo , Trypanosoma brucei brucei/metabolismo , Northern Blotting , Linhagem Celular , Processamento de Imagem Assistida por Computador , Hibridização in Situ Fluorescente , Microscopia Eletrônica , Imagem com Lapso de Tempo
6.
Am J Hum Genet ; 88(5): 628-34, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21549342

RESUMO

In a Dutch family with an X-linked postlingual progressive hearing impairment, a critical linkage interval was determined to span a region of 12.9 Mb flanked by the markers DXS7108 and DXS7110. This interval overlaps with the previously described DFNX4 locus and contains 75 annotated genes. Subsequent next-generation sequencing (NGS) detected one variant within the linkage interval, a nonsense mutation in SMPX. SMPX encodes the small muscle protein, X-linked (SMPX). Further screening was performed on 26 index patients from small families for which X-linked inheritance of nonsyndromic hearing impairment (NSHI) was not excluded. We detected a frameshift mutation in SMPX in one of the patients. Segregation analysis of both mutations in the families in whom they were found revealed that the mutations cosegregated with hearing impairment. Although we show that SMPX is expressed in many different organs, including the human inner ear, no obvious symptoms other than hearing impairment were observed in the patients. SMPX had previously been demonstrated to be specifically expressed in striated muscle and, therefore, seemed an unlikely candidate gene for hearing impairment. We hypothesize that SMPX functions in inner ear development and/or maintenance in the IGF-1 pathway, the integrin pathway through Rac1, or both.


Assuntos
Códon sem Sentido , Genes Ligados ao Cromossomo X , Perda Auditiva/genética , Proteínas Musculares/genética , Adolescente , Adulto , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Mutação da Fase de Leitura , Perda Auditiva/patologia , Humanos , Fator de Crescimento Insulin-Like I/genética , Masculino , Pessoa de Meia-Idade , Anotação de Sequência Molecular , Linhagem , Polimorfismo de Nucleotídeo Único , Análise de Sequência , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...